Self-Organizing Cases to Find Paradigms
نویسندگان
چکیده
Case-based information systems can be seen as lazy machine learning algorithms; they select a number of training instances and then classify unseen cases as the most similar stored instance. One of the main disadvantages of these systems is the high number of patterns retained. In this paper, a new method for extracting just a small set of paradigms from a set of training examples is presented. Additionally, we provide the set of attributes describing the representative examples that are relevant for classification purposes. Our algorithm computes the Kohonen self-organizing maps attached to the training set to then compute the coverage of each map node. Finally, a heuristic procedure selects both the paradigms and the dimensions (or attributes) to be considered when measuring similarity in future classification tasks.
منابع مشابه
Gait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map
The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...
متن کاملGait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map
The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...
متن کاملGait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map
The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...
متن کاملGait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map
The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...
متن کاملUni cation of Neural and Fuzzy Computing Paradigms
1 This paper describes a neuro-fuzzy paradigm which uni es several neural and fuzzy paradigms. Similarities and di erences among the various neural and fuzzy paradigms are analyzed and results have been used to derive the proposed uni cation paradigm. A conversion method is also presented to map perceptrons, radial basis networks and fuzzy systems onto each other. It will also be shown that , b...
متن کامل